EconPapers    
Economics at your fingertips  
 

An explicit representation of the transition densities of the skew Brownian motion with drift and two semipermeable barriers

Dereudre David (), Mazzonetto Sara () and Roelly Sylvie ()
Additional contact information
Dereudre David: Laboratoire de Mathématiques Paul Painlevé, UMR CNRS 8524, Université Lille1, 59655 Villeneuve d'Ascq Cedex, France
Mazzonetto Sara: Institut für Mathematik der Universität Potsdam, Science Park Golm, Karl-Liebknecht-Str. 24/25, 14476 Potsdam Golm, Germany; and Laboratoire de Mathématiques Paul Painlevé, UMR CNRS 8524, Université Lille1, 59655 Villeneuve d'Ascq Cedex, France
Roelly Sylvie: Institut für Mathematik der Universität Potsdam, Science Park Golm, Karl-Liebknecht-Str. 24/25, 14476 Potsdam Golm, Germany

Monte Carlo Methods and Applications, 2016, vol. 22, issue 1, 1-23

Abstract: In this paper, we obtain an explicit representation of the transition density of the one-dimensional skew Brownian motion with (a constant drift and) two semipermeable barriers. Moreover, we propose a rejection sampling method to simulate this density in an exact way.

Keywords: Skew Brownian motion; semipermeable barriers; distorted Brownian motion; local time; rejection sampling; exact simulation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/mcma-2016-0100 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:mcmeap:v:22:y:2016:i:1:p:1-23:n:1

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/mcma/html

DOI: 10.1515/mcma-2016-0100

Access Statistics for this article

Monte Carlo Methods and Applications is currently edited by Karl K. Sabelfeld

More articles in Monte Carlo Methods and Applications from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:mcmeap:v:22:y:2016:i:1:p:1-23:n:1