An explicit representation of the transition densities of the skew Brownian motion with drift and two semipermeable barriers
Dereudre David (),
Mazzonetto Sara () and
Roelly Sylvie ()
Additional contact information
Dereudre David: Laboratoire de Mathématiques Paul Painlevé, UMR CNRS 8524, Université Lille1, 59655 Villeneuve d'Ascq Cedex, France
Mazzonetto Sara: Institut für Mathematik der Universität Potsdam, Science Park Golm, Karl-Liebknecht-Str. 24/25, 14476 Potsdam Golm, Germany; and Laboratoire de Mathématiques Paul Painlevé, UMR CNRS 8524, Université Lille1, 59655 Villeneuve d'Ascq Cedex, France
Roelly Sylvie: Institut für Mathematik der Universität Potsdam, Science Park Golm, Karl-Liebknecht-Str. 24/25, 14476 Potsdam Golm, Germany
Monte Carlo Methods and Applications, 2016, vol. 22, issue 1, 1-23
Abstract:
In this paper, we obtain an explicit representation of the transition density of the one-dimensional skew Brownian motion with (a constant drift and) two semipermeable barriers. Moreover, we propose a rejection sampling method to simulate this density in an exact way.
Keywords: Skew Brownian motion; semipermeable barriers; distorted Brownian motion; local time; rejection sampling; exact simulation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/mcma-2016-0100 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:mcmeap:v:22:y:2016:i:1:p:1-23:n:1
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/mcma/html
DOI: 10.1515/mcma-2016-0100
Access Statistics for this article
Monte Carlo Methods and Applications is currently edited by Karl K. Sabelfeld
More articles in Monte Carlo Methods and Applications from De Gruyter
Bibliographic data for series maintained by Peter Golla ().