Effect of covariate misspecifications in the marginalized zero-inflated Poisson model
Iddi Samuel () and
Nwoko Esther O. ()
Additional contact information
Iddi Samuel: Department of Statistics, University of Ghana, P.O. Box LG115, Legon, Ghana
Nwoko Esther O.: Department of Statistics, University of Cape Town, Cape Town, South Africa
Monte Carlo Methods and Applications, 2017, vol. 23, issue 2, 111-120
Abstract:
Count outcomes are often modelled using the Poisson regression. However, this model imposes a strict mean-variance relationship that is unappealing in many contexts. Several studies in the life sciences result in count outcomes with excessive amounts of zeros. The presence of the excess zeros introduces extra dispersion in the data which cannot be accounted for by the traditional Poisson regression. The zero-inflated Poisson (ZIP) and zero-inflated negative binomial models are popular alternative. The zero-inflated models comprise two key components; a logistic part which models the zeros, and a Poisson component to handle the positive counts. Both components allow the inclusion of covariates. Civettini and Hines [3] investigated misspecification effects in the zero-inflated negative binomial regression models. Long,Preisser, Herring and Golin [10] proposed a so-called marginalized zero-inflated Poisson (MZIP) model that allows direct marginal interpretation for fixed effect estimates to overcome the often sub-population specific interpretation of the traditional zero-inflated models. In this research, the effects of misspecification of components of the MZIP regression model are investigated through a comprehensive simulation study. Two different incorrect specifications of the components of an MZIP model were considered, namely ‘Omission’ and ‘Misspecification’. Bias, standard error (precision) of estimates and mean square error (MSE) are computed while varying the sample size. Type I error rates are also evaluated for the misspecified models. Results of a Monte Carlo simulation are reported. It was observed that omissions in both parts of the models lead to biases in the estimated parameters. The intercept parameters were the most severely affected. Furthermore, in all the types of omissions, parameters in the zero-inflated part of the models were much affected compared to the Poisson part in terms of both bias and MSE. Generally, bias and MSE decrease as sample sizes increase for all parameters. It was also found that misspecification can either increase, preserve or decrease the type I error rates depending on the sample size.
Keywords: Marginal model; maximum likelihood estimation; misspecification; logistic model; omission; Poisson model; simulations; type I error rate; zero-inflation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/mcma-2017-0106 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:mcmeap:v:23:y:2017:i:2:p:111-120:n:4
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/mcma/html
DOI: 10.1515/mcma-2017-0106
Access Statistics for this article
Monte Carlo Methods and Applications is currently edited by Karl K. Sabelfeld
More articles in Monte Carlo Methods and Applications from De Gruyter
Bibliographic data for series maintained by Peter Golla ().