Invariant density estimation for a reflected diffusion using an Euler scheme
Cattiaux Patrick (),
León José R. () and
Prieur Clémentine ()
Additional contact information
Cattiaux Patrick: Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS UMR 5219, 118 route de Narbonne, 31062Toulousecedex 09, France
León José R.: Escuela de Matemática, Facultad de Ciencias, Universidad Central de Venezuela, Av. Los Ilustres,Los Chaguaramos, Caracas 1040, Venezuela
Prieur Clémentine: Université Grenoble Alpes, CNRS Laboratoire Jean Kuntzmann, AIRSEA Inria project/team, GrenobleCedex, France
Monte Carlo Methods and Applications, 2017, vol. 23, issue 2, 71-88
Abstract:
We give an explicit error bound between the invariant density of an elliptic reflected diffusion in a smooth compact domain and the kernel estimator built on the symmetric Euler scheme introduced in [3].
Keywords: Ergodic reflected diffusion process; Euler scheme rate of convergence for large times; discrete approximation for the invariant measure (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/mcma-2017-0104 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:mcmeap:v:23:y:2017:i:2:p:71-88:n:2
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/mcma/html
DOI: 10.1515/mcma-2017-0104
Access Statistics for this article
Monte Carlo Methods and Applications is currently edited by Karl K. Sabelfeld
More articles in Monte Carlo Methods and Applications from De Gruyter
Bibliographic data for series maintained by Peter Golla ().