Monte-Carlo algorithms for a forward Feynman–Kac-type representation for semilinear nonconservative partial differential equations
Le Cavil Anthony (),
Oudjane Nadia () and
Russo Francesco ()
Additional contact information
Le Cavil Anthony: ENSTA ParisTech, Université Paris-Saclay, Unité de Mathématiques Appliquées (UMA), 828 Bd. des Maréchaux, 91120 Palaiseau, France
Oudjane Nadia: EDF Lab Paris-Saclay and FiME, Laboratoire de Finance des Marchés de l’Energie, 7 Boulevard Gaspard Monge, 91120 Palaiseau, France
Russo Francesco: ENSTA ParisTech, Université Paris-Saclay, Unité de Mathématiques Appliquées (UMA), 828 Bd. des Maréchaux, 91120 Palaiseau, France
Monte Carlo Methods and Applications, 2018, vol. 24, issue 1, 55-70
Abstract:
The paper is devoted to the construction of a probabilistic particle algorithm. This is related to a nonlinear forward Feynman–Kac-type equation, which represents the solution of a nonconservative semilinear parabolic partial differential equation (PDE). Illustrations of the efficiency of the algorithm are provided by numerical experiments.
Keywords: Semilinear partial differential equations; nonlinear Feynman–Kac-type functional; particle systems; Euler schemes (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/mcma-2018-0005 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:mcmeap:v:24:y:2018:i:1:p:55-70:n:5
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/mcma/html
DOI: 10.1515/mcma-2018-0005
Access Statistics for this article
Monte Carlo Methods and Applications is currently edited by Karl K. Sabelfeld
More articles in Monte Carlo Methods and Applications from De Gruyter
Bibliographic data for series maintained by Peter Golla ().