EconPapers    
Economics at your fingertips  
 

Parameter least-squares estimation for time-inhomogeneous Ornstein–Uhlenbeck process

Getut Pramesti

Monte Carlo Methods and Applications, 2023, vol. 29, issue 1, 1-32

Abstract: We address the least-squares estimation of the drift coefficient parameter θ = ( λ , A , B , ω p ) \theta=(\lambda,A,B,\omega_{p}) of a time-inhomogeneous Ornstein–Uhlenbeck process that is observed at high frequency, in which the discretized step size ℎ satisfies h → 0 h\to 0 . In this paper, under the conditions n ⁢ h → ∞ nh\to\infty and n ⁢ h 2 → 0 nh^{2}\to 0 , we prove the consistency and the asymptotic normality of the estimators. We obtain the convergence of the parameters at rate n ⁢ h \sqrt{nh} , except for ω p \omega_{p} at n 3 ⁢ h 3 \sqrt{n^{3}h^{3}} . To verify our theoretical findings, we do a simulation study. We then illustrate the use of the proposed model in fitting the energy use of light fixtures in one Belgium household and the stock exchange.

Keywords: Least-squares estimator; estimation; Ornstein–Uhlenbeck process (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/mcma-2022-2127 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:mcmeap:v:29:y:2023:i:1:p:1-32:n:5

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/mcma/html

DOI: 10.1515/mcma-2022-2127

Access Statistics for this article

Monte Carlo Methods and Applications is currently edited by Karl K. Sabelfeld

More articles in Monte Carlo Methods and Applications from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:mcmeap:v:29:y:2023:i:1:p:1-32:n:5