EconPapers    
Economics at your fingertips  
 

Total variation bound for Milstein scheme without iterated integrals

Yamada Toshihiro ()
Additional contact information
Yamada Toshihiro: Hitotsubashi University, Tokyo, Japan

Monte Carlo Methods and Applications, 2023, vol. 29, issue 3, 221-242

Abstract: The paper gives new results for the Milstein scheme of stochastic differential equations. We show that (i) the Milstein scheme holds as a weak approximation in total variation sense and is given by second-order polynomials of Brownian motion without using iterated integrals under non-commutative vector fields; (ii) the accuracy of the Milstein scheme is better than that of the Euler–Maruyama scheme in an asymptotic sense. In particular, we prove d TV ⁢ ( X T ε , X ¯ T ε , Mil , ( n ) ) ≤ C ⁢ ε 2 / n d_{\mathrm{TV}}(X_{T}^{\varepsilon},\bar{X}_{T}^{\varepsilon,\mathrm{Mil},(n)})\leq C\varepsilon^{2}/n and d TV ⁢ ( X T ε , X ¯ T ε , EM , ( n ) ) ≤ C ⁢ ε / n d_{\mathrm{TV}}(X_{T}^{\varepsilon},\bar{X}_{T}^{\varepsilon,\mathrm{EM},(n)})\leq C\varepsilon/n , where d TV d_{\mathrm{TV}} is the total variation distance, X ε X^{\varepsilon} is a solution of a stochastic differential equation with a small parameter 𝜀, and X ¯ ε , Mil , ( n ) \bar{X}^{\varepsilon,\mathrm{Mil},(n)} and X ¯ ε , EM , ( n ) \bar{X}^{\varepsilon,\mathrm{EM},(n)} are the Milstein scheme without iterated integrals and the Euler–Maruyama scheme, respectively. In computational aspect, the scheme is useful to estimate probability distribution functions by a simple simulation without Lévy area computation. Numerical examples demonstrate the validity of the method.

Keywords: Milstein scheme; stochastic differential equation; total variation distance (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/mcma-2023-2007 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:mcmeap:v:29:y:2023:i:3:p:221-242:n:3

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/mcma/html

DOI: 10.1515/mcma-2023-2007

Access Statistics for this article

Monte Carlo Methods and Applications is currently edited by Karl K. Sabelfeld

More articles in Monte Carlo Methods and Applications from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:mcmeap:v:29:y:2023:i:3:p:221-242:n:3