A Switching ARCH Model for the German DAX Index
Sylvia Kaufmann and
Scheicher Martin ()
Additional contact information
Scheicher Martin: European Central Bank
Studies in Nonlinear Dynamics & Econometrics, 2006, vol. 10, issue 4, 37
Abstract:
This paper estimates a switching autoregressive conditional heteroskedastic time series model for returns on the daily German stock market index. Volatility clustering is captured by persistent periods of different volatility levels and by the dependence on past innovations. We introduce a leverage term to model the asymmetric response of volatility to shocks. Model specification and estimation is performed within a Bayesian framework using Markov Chain Monte Carlo simulation methods. Model diagnostics document a good fit of the switching ARCH model. The persistence of shocks in volatility coming from the autoregressive conditional part of the variance is considerably lower than that obtained using a GARCH(1,1) model. Our volatility estimate closely follows market implied volatility. When we compare the forecasting performance, switching ARCH turns out to be an unbiased estimator of realized volatility. Nevertheless, over all forecast horizons, model-based volatility forecasts do not add information about future volatility. Up to a 7-day horizon, market implied volatility already contains nearly all information.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://doi.org/10.2202/1558-3708.1290 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sndecm:v:10:y:2006:i:4:n:3
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/snde/html
DOI: 10.2202/1558-3708.1290
Access Statistics for this article
Studies in Nonlinear Dynamics & Econometrics is currently edited by Bruce Mizrach
More articles in Studies in Nonlinear Dynamics & Econometrics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().