Volatility Components and Long Memory-Effects Revisited
Markus Haas
Studies in Nonlinear Dynamics & Econometrics, 2007, vol. 11, issue 2, 39
Abstract:
The goal of this paper is to illuminate the capability of the component GARCH model of Ding and Granger (1996) and Engle and Lee (1999) to reproduce the long memory-type behavior of financial volatility. The potential of this model to capture the long memory dynamics observed in measures of financial volatility has been documented recently by Maheu (2005) and Deo et al. (2006), who base their conclusions on simulation techniques and a forecasting exercise, respectively. In this paper, a simple explanation for these observations is provided, which is based on the theoretical autocorrelation function (ACF) of the component GARCH model. We also elucidate why even higher-order GARCH models with Bollerslev's (1986) nonnegativity constraints enforced cannot mimic the long memory effects. The reasoning is supported with several empirical examples, for which we explicitly calculate the theoretical ACF implied by a couple of different fitted models, and find that their structure is just as predicted by our argument. To conveniently conduct these computations, a general simple method for computing the theoretical ACF of GARCH models is suggested, which is easier to use than the formulas developed so far, and particularly so for higher lag-orders. The ability of the component model to approximate long memory is also validated on the basis of a visual comparison between the empirical and the implied theoretical ACFs.
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.2202/1558-3708.1411 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sndecm:v:11:y:2007:i:2:n:3
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/snde/html
DOI: 10.2202/1558-3708.1411
Access Statistics for this article
Studies in Nonlinear Dynamics & Econometrics is currently edited by Bruce Mizrach
More articles in Studies in Nonlinear Dynamics & Econometrics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().