EconPapers    
Economics at your fingertips  
 

Extracting the Cyclical Component in Hours Worked

Mauro Bernardi, Della Corte Giuseppe () and Tommaso Proietti
Additional contact information
Della Corte Giuseppe: Bank of Italy, Rome

Studies in Nonlinear Dynamics & Econometrics, 2011, vol. 15, issue 3, 28

Abstract: The series on average hours worked in the manufacturing sector is a key leading indicator of the U.S. business cycle. The paper deals with robust estimation of the cyclical component for the seasonally adjusted time series. This is achieved by an unobserved components model featuring an irregular component that is represented by a Gaussian mixture with two components. The mixture aims at capturing the kurtosis which characterizes the data. After presenting a Gibbs sampling scheme, we illustrate that the Gaussian mixture model provides a satisfactory representation of the data, allowing for the robust estimation of the cyclical component of per capita hours worked. Another important piece of evidence is that the outlying observations are not scattered randomly throughout the sample, but have a distinctive seasonal pattern. Therefore, seasonal adjustment plays a role. We finally show that if a flexible seasonal model is adopted for the unadjusted series, the level of outlier contamination is drastically reduced.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.2202/1558-3708.1818 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sndecm:v:15:y:2011:i:3:n:5

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/snde/html

DOI: 10.2202/1558-3708.1818

Access Statistics for this article

Studies in Nonlinear Dynamics & Econometrics is currently edited by Bruce Mizrach

More articles in Studies in Nonlinear Dynamics & Econometrics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-23
Handle: RePEc:bpj:sndecm:v:15:y:2011:i:3:n:5