Time-varying cointegration, identification, and cointegration spaces
Luis Martins and
Vasco Gabriel
Studies in Nonlinear Dynamics & Econometrics, 2013, vol. 17, issue 2, 199-209
Abstract:
We derive the conditions under which time-varying cointegration leads to cointegration spaces that may be time-invariant or, in contrast, time-varying. The model of interest is a vector error correction model with arbitrary time-varying cointegration parameters. We clarify the role of identification and normalization restrictions and show that structural breaks in error-correction models may actually correspond to stable long-run economic relationships, as opposed to a single-equation setup, in which an identification restriction is imposed. Moreover, we show that, in a time-varying cointegrating relationship with a given number of variables and cointegration rank, there is a minimum number of orthogonal Fourier functions that most likely guarantees time-varying cointegrating spaces.
Keywords: Time-varying cointegration; cointegration spaces; identification (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1515/snde-2012-0022 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sndecm:v:17:y:2013:i:2:p:199-209:n:3
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/snde/html
DOI: 10.1515/snde-2012-0022
Access Statistics for this article
Studies in Nonlinear Dynamics & Econometrics is currently edited by Bruce Mizrach
More articles in Studies in Nonlinear Dynamics & Econometrics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().