Panel threshold model with covariate-dependent thresholds and its application to the cash flow/investment relationship
Yang Lixiong ()
Additional contact information
Yang Lixiong: School of Management, Lanzhou University, Lanzhou, China
Studies in Nonlinear Dynamics & Econometrics, 2024, vol. 28, issue 4, 645-659
Abstract:
This paper introduces a panel threshold model with covariate-dependent and time-varying thresholds (PTCT), which extends the classical panel threshold model of Hansen, B. E. 1999. “Threshold Effects in Non-dynamic Panels: Estimation, Testing, and Inference.” Journal of Econometrics 93: 345–68 to a framework with multiple covariate-dependent and time-varying thresholds. Based on the within-group transformation and Markov chain Monte Carlo (MCMC) technique, we develop methods for estimation and inference for threshold parameters in the proposed panel threshold model. We also suggest test statistics for threshold effect, threshold constancy, and for determining the number of thresholds. Monte Carlo simulations indicate that the estimation, inference and testing procedures work well in finite samples. Empirically, using the same data as in Hansen, B. E. 1999. “Threshold Effects in Non-dynamic Panels: Estimation, Testing, and Inference.” Journal of Econometrics 93: 345–68 we revisit the cash flow/investment relationship and find quite different results.
Keywords: cash flow/investment relationship; estimation; multiple covariate-dependent thresholds; panel threshold model; testing (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/snde-2022-0035 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sndecm:v:28:y:2024:i:4:p:645-659:n:1001
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/snde/html
DOI: 10.1515/snde-2022-0035
Access Statistics for this article
Studies in Nonlinear Dynamics & Econometrics is currently edited by Bruce Mizrach
More articles in Studies in Nonlinear Dynamics & Econometrics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().