EconPapers    
Economics at your fingertips  
 

Assessing Chaos in Time Series: Statistical Aspects and Perspectives

Simone Giannerini and Rosa Rodolfo ()
Additional contact information
Rosa Rodolfo: University of Bologna, Italy

Studies in Nonlinear Dynamics & Econometrics, 2004, vol. 8, issue 2, 25

Abstract: Chaos theory offers to time series analysis new perspectives as well as concepts and ideas that have a through contribution to statistics. On the other hand, statistical methodology has shown to play a crucial role for the comprehension of nonlinear and chaotic phenomena. One peculiar feature of chaotic systems is sensitivity to initial conditions, which is responsible of the unpredictability we experience in such phenomena. One of the most popular quantity that measures this property is the maximum Lyapunov characteristic exponent (MLCE). In this paper we discuss from a statistical perspective the problems arising in estimating both the MLCE and its generalizations in time series, issues that have recently deserved attention in the community of time series analysts. We also present a method based on resampling in order to assign confidence interval to the estimates of the MLCE. It is shown that in addition to answering the question of the presence of chaos, these methods give relevant contributions to the characterization of many other aspects of nonlinear time series.

Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.2202/1558-3708.1215 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sndecm:v:8:y:2004:i:2:n:11

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/snde/html

DOI: 10.2202/1558-3708.1215

Access Statistics for this article

Studies in Nonlinear Dynamics & Econometrics is currently edited by Bruce Mizrach

More articles in Studies in Nonlinear Dynamics & Econometrics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-23
Handle: RePEc:bpj:sndecm:v:8:y:2004:i:2:n:11