Analyzing Financial Time Series through Robust Estimators
Luigi Grossi
Studies in Nonlinear Dynamics & Econometrics, 2004, vol. 8, issue 2, 15
Abstract:
In this paper we suggest an extension of the forward search methodology to GARCH models which are often used for forecasting stock market volatility. It is frequently found that estimated residuals from GARCH models have excess kurtosis, even when one allows for conditional t-distributed errors. Some papers have appeared on outlier detection in GARCH models but the proposed methods are iterative and may suffer from masking effects. The forward search is a method for determining the effect of outliers on fitted parameters and for detecting also masked outliers. In the case of GARCH models outliers are strictly related to extreme observations which are responsible for the well-known volatility clustering of financial returns. It is possible, through the forward search, to visualize the effect on estimated parameters of patches of extremal observations.
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.2202/1558-3708.1224 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sndecm:v:8:y:2004:i:2:n:3
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/snde/html
DOI: 10.2202/1558-3708.1224
Access Statistics for this article
Studies in Nonlinear Dynamics & Econometrics is currently edited by Bruce Mizrach
More articles in Studies in Nonlinear Dynamics & Econometrics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().