Neural Tests for Conditional Heteroskedasticity in ARCH-M Models
Christian de Peretti and
Carole Siani
Studies in Nonlinear Dynamics & Econometrics, 2004, vol. 8, issue 3, 24
Abstract:
This paper deals with tests for detecting conditional heteroskedasticity in ARCH-M models using three kinds of methods: neural networks techniques, bootstrap methods and both combined.As regards the ARCH models, Péguin-Feissolle (2000) developed tests based on the modelling techniques with neural network. However, as regards the ARCH-M models, a nuisance parameter is not identified and the tests are not applicable. To solve this problem, we propose to adapt these neural tests to Davies procedure (1987) leading to new tests. The performance of these latter tests are compared with those of Bera and Ra test (1995).However, Bera and Ra test has not really satisfactory performance and suffer from serious size distortion. Our neural test will have the same problem. To solve this second problem, without loss of power, we apply parametric and nonparametric bootstrap methods on the underlying test statistics.Lastly, to examine the size and the power properties of the tests in small samples, Monte Carlo simulations are carried out with various standard and non-standard models for conditional heteroskedasticity as to illustrate a variety of situations. In addition, the graphical presentation of Davidson and MacKinnon (1998a) is used to show the "true" power of the tests and not only the (nominal) power, as it is often the case, that can be meaningless.
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.2202/1558-3708.1239 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sndecm:v:8:y:2004:i:3:n:3
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/snde/html
DOI: 10.2202/1558-3708.1239
Access Statistics for this article
Studies in Nonlinear Dynamics & Econometrics is currently edited by Bruce Mizrach
More articles in Studies in Nonlinear Dynamics & Econometrics from De Gruyter
Bibliographic data for series maintained by Peter Golla (peter.golla@degruyter.com).