EconPapers    
Economics at your fingertips  
 

Forecasting Stock Market Volatility with Regime-Switching GARCH Models

Juri Marcucci

Studies in Nonlinear Dynamics & Econometrics, 2005, vol. 9, issue 4, 55

Abstract: In this paper we compare a set of different standard GARCH models with a group of Markov Regime-Switching GARCH (MRS-GARCH) in terms of their ability to forecast the US stock market volatility at horizons that range from one day to one month. To take into account the excessive persistence usually found in GARCH models that implies too smooth and too high volatility forecasts, in the MRS-GARCH models all parameters switch between a low and a high volatility regime. Both gaussian and fat-tailed conditional distributions for the residuals are assumed, and the degrees of freedom can also be state-dependent to capture possible time-varying kurtosis. The forecasting performances of the competing models are evaluated both with statistical and risk-management loss functions. Under statistical losses, we use both tests of equal predictive ability of the Diebold-Mariano-type and test of superior predictive ability. Under risk-management losses, we use a two-step selection procedure where we first check which models pass the tests of correct unconditional or conditional coverage and then we compare the best models under two subjective VaR-based loss functions. The empirical analysis demonstrates that MRS-GARCH models do really outperform all standard GARCH models in forecasting volatility at horizons shorter than one week under both statistical and VaR-based risk-management loss functions. In particular, all tests reject the presence of a better model than the MRS-GARCH with normal innovations. However, at forecast horizons longer than one week, standard asymmetric GARCH models tend to be superior.

Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (150)

Downloads: (external link)
https://doi.org/10.2202/1558-3708.1145 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sndecm:v:9:y:2005:i:4:n:6

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/snde/html

DOI: 10.2202/1558-3708.1145

Access Statistics for this article

Studies in Nonlinear Dynamics & Econometrics is currently edited by Bruce Mizrach

More articles in Studies in Nonlinear Dynamics & Econometrics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sndecm:v:9:y:2005:i:4:n:6