Mining anatomical traits: a novel modelling approach for increased water use efficiency under drought conditions in plants
Manoj Kulkarni,
Tushar Borse and
Sushama Chaphalkar
Additional contact information
Manoj Kulkarni: School of Biotechnology, Vidya Pratishthan, Baramati District Pune, India
Tushar Borse: School of Biotechnology, Vidya Pratishthan, Baramati District Pune, India
Sushama Chaphalkar: School of Biotechnology, Vidya Pratishthan, Baramati District Pune, India
Czech Journal of Genetics and Plant Breeding, 2008, vol. 44, issue 1, 11-21
Abstract:
Crop yields are reduced by 70-80% due to a water stress situation specifically during the reproductive stage and are not able to fulfil the needs of food requirement in developed and developing countries of the world. Earlier work was mainly focused on the use of morphological or physiological and molecular aspects for improved stress tolerance. Efforts are being made to overcome this problem with the help of today's sophisticated and advanced technology through genomics, proteomics and metabolomics. The presented model summarizes our work in the last five years to mine anatomical parameters as a novel approach to further improving introgression or exploitation of stress adaptive traits. We have focused on some key anatomical traits playing a substantial role in water stress tolerance. This new conceptual model encompasses increased palisade mesophyll height, higher leaf strength index (LSI), higher number of conducting tissues with increased diameter in leaf, stem and root and controlled transpiration rate due to a lower number of stomata per unit leaf area along with the increased guard cell size. Different plants viz. Lycopersicon esculentum, Capsicum annuum, and Calotropis gigantea were screened by developing polyploids to validate this model approach. Genotypes of Vitis vinifera and Solanum melongena were also screened. Wild relatives like Lycopersicon esculentum var. cerasiforme and Solanum khasianum were evaluated for comparison. These observations were further correlated with various stress adaptation traits like yield under stress, in vitro screening, chlorophyll content, transpiration heating and cooling, molecular markers etc. A new scoring method is proposed which will be helpful to screen a large set of germplasms on a preliminary basis to discriminate genotypes for drought tolerance. There is an urgent need to study the genetics of these stress adaptive traits using high throughput molecular markers to make them more useful for a higher magnitude of genetic gain.
Keywords: drought; palisade mesophyll; xylem; water use efficiency; polyploids (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://cjgpb.agriculturejournals.cz/doi/10.17221/1330-CJGPB.html (text/html)
http://cjgpb.agriculturejournals.cz/doi/10.17221/1330-CJGPB.pdf (application/pdf)
free of charge
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:caa:jnlcjg:v:44:y:2008:i:1:id:1330-cjgpb
DOI: 10.17221/1330-CJGPB
Access Statistics for this article
Czech Journal of Genetics and Plant Breeding is currently edited by Ing. Markéta Knížková, (Executive Editor)
More articles in Czech Journal of Genetics and Plant Breeding from Czech Academy of Agricultural Sciences
Bibliographic data for series maintained by Ivo Andrle ().