Effect of dietary Sophora alopecuroides supplementation on differential expression of intramuscular fat-related genes of Ningxia Tan sheep as determined by transcriptome sequencing
Guosheng Xin,
Ju Guo,
Baojun Yu,
Hao Li,
Yaling Gu,
Qiaoxian Gao and
Juan Zhang
Additional contact information
Guosheng Xin: School of Life Science, Ningxia University, Yinchuan, P.R. China
Ju Guo: School of Agriculture, Ningxia University, Yinchuan, P.R. China
Baojun Yu: School of Agriculture, Ningxia University, Yinchuan, P.R. China
Hao Li: School of Life Science, Ningxia University, Yinchuan, P.R. China
Yaling Gu: School of Agriculture, Ningxia University, Yinchuan, P.R. China
Qiaoxian Gao: School of Life Science, Ningxia University, Yinchuan, P.R. China
Juan Zhang: School of Agriculture, Ningxia University, Yinchuan, P.R. China
Czech Journal of Animal Science, 2022, vol. 67, issue 5, 185-197
Abstract:
The present study investigated the effect of different dietary levels (0%, 0.25%, 0.5%, 1%, 2%) of Sophora alopecuroides (S. alopecuroides) on intramuscular fat (IMF) content in Ningxia Tan sheep. Candidate genes affecting IMF deposition were screened by comparing the RNA-Seq profiles of test (2% S. alopecuroides) and control (no S. alopecuroides) groups. The results showed that the intramuscular fat content of the diet supplemented with S. alopecuroides was significantly lower than that of the control group, and the intramuscular fat content decreased significantly with the increase of the dietary content of S. alopecuroides (P < 0.05). The highest IMF content of the control group (group A) was 4.21%, which was significantly higher than that of the other four experimental groups (B, C, D, E) (P < 0.05). Moreover, 66 genes were significantly upregulated and 202 genes were significantly downregulated in the test group compared to the control. Gene Ontology functional annotation revealed that the differentially expressed genes were closely related to plasma lipoprotein particle assembly, plasma lipoprotein particle organization, protein-lipid complex subunit organization, and other biological processes. KEGG pathway analysis showed that the differentially expressed genes belonged to 147 metabolic pathways. Finally, four differential genes which may be related to IMF deposition were screened out in PPAR signalling pathway, fatty acid biosynthesis, fatty acid degradation, and fatty acid metabolism. The quantitative analysis of four differential genes including ACSL3, PLIN2, ABCA1 and ANGPTL4 was carried out by RT-qPCR method, and the results were basically consistent with those of RNA-seq. Among them, the quantitative results of PLIN2 gene were slightly different from the sequencing results, but the difference was not significant, and they may be false positive. This study lays the foundation for understanding the molecular mechanism regulating mutton quality, and provides a theoretical basis for the study of S. alopecuroides as a feed additive to improve mutton meat quality and impact the gene function.
Keywords: S. alopecuroides; RT-qPCR; IMF deposition; RNA-Seq (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://cjas.agriculturejournals.cz/doi/10.17221/127/2021-CJAS.html (text/html)
http://cjas.agriculturejournals.cz/doi/10.17221/127/2021-CJAS.pdf (application/pdf)
free of charge
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:caa:jnlcjs:v:67:y:2022:i:5:id:127-2021-cjas
DOI: 10.17221/127/2021-CJAS
Access Statistics for this article
Czech Journal of Animal Science is currently edited by Bc. Michaela Polcarová
More articles in Czech Journal of Animal Science from Czech Academy of Agricultural Sciences
Bibliographic data for series maintained by Ivo Andrle ().