Effects of subsoiling stage on summer maize water use efficiency and yield in North China Plains
Pengchong Zhou,
Shaobo Wang,
Liangliang Guo,
Ying Shen,
Huifang Han and
Tangyuan Ning
Additional contact information
Pengchong Zhou: State Key Laboratory of Crop Biology, Key Laboratory of Crop Water Physiology and Drought Tolerance Germplasm Improvement of Ministry of Agriculture, College of Agronomy, Shandong Agricultural University, Tai'an, P.R. China
Shaobo Wang: State Key Laboratory of Crop Biology, Key Laboratory of Crop Water Physiology and Drought Tolerance Germplasm Improvement of Ministry of Agriculture, College of Agronomy, Shandong Agricultural University, Tai'an, P.R. China
Liangliang Guo: State Key Laboratory of Crop Biology, Key Laboratory of Crop Water Physiology and Drought Tolerance Germplasm Improvement of Ministry of Agriculture, College of Agronomy, Shandong Agricultural University, Tai'an, P.R. China
Ying Shen: State Key Laboratory of Crop Biology, Key Laboratory of Crop Water Physiology and Drought Tolerance Germplasm Improvement of Ministry of Agriculture, College of Agronomy, Shandong Agricultural University, Tai'an, P.R. China
Tangyuan Ning: State Key Laboratory of Crop Biology, Key Laboratory of Crop Water Physiology and Drought Tolerance Germplasm Improvement of Ministry of Agriculture, College of Agronomy, Shandong Agricultural University, Tai'an, P.R. China
Plant, Soil and Environment, 2019, vol. 65, issue 11, 556-562
Abstract:
Aiming at the problems of shallow effective soil layering and low utilization rate of precipitation in the North China Plain. The effects of different subsoiling stages on soil physical properties and water use in winter wheat/summer maize fields were studied. Three kinds of tillage treatments were studied: rotary tillage to a depth of 15 cm in October and no-tillage in June (RT), rotary tillage to a depth of 15 cm in October and subsoiling to 35 cm in June (ST-J), subsoiling to a depth of 35 cm in October and no-tillage in June (ST-O). Changes in soil bulk density and soil compaction were consistent over two seasons. Compared to RT, in the 10-50 cm soil layer, ST-J and ST-O decreased the average soil bulk density by 6.18% and 5.66%, respectively, and the soil compaction in the 10-60 cm layer was reduced by 17.89% and 20.50%. ST was improved soil structure and increased the water content of deep soil. The water use efficiency (WUE) of ST-J and ST-O increased by 4.73% and 14.83%, respectively, and the maize yields by 2.90% and 11.35%, respectively. Considering the WUE and maize yields, it was considered that ST-O is more suitable for tillage in the North China Plain.
Keywords: Zea mays L.; water storage; soil moisture; weather conditions; soil physics; grain (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://pse.agriculturejournals.cz/doi/10.17221/353/2019-PSE.html (text/html)
http://pse.agriculturejournals.cz/doi/10.17221/353/2019-PSE.pdf (application/pdf)
free of charge
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:caa:jnlpse:v:65:y:2019:i:11:id:353-2019-pse
DOI: 10.17221/353/2019-PSE
Access Statistics for this article
Plant, Soil and Environment is currently edited by Kateřina Součková
More articles in Plant, Soil and Environment from Czech Academy of Agricultural Sciences
Bibliographic data for series maintained by Ivo Andrle ().