EconPapers    
Economics at your fingertips  
 

Decomposition of rice straw residues and the emission of CO2, CH4 under paddy rice and crop rotation in the Vietnamese Mekong Delta region - A microcosm study

Tran Van Dung, Tat Anh Thu, Vu Van Long and Chau Thi Da
Additional contact information
Tran Van Dung: SoilScience Department, College of Agriculture, Can Tho University, Can Tho, Vietnam
Tat Anh Thu: SoilScience Department, College of Agriculture, Can Tho University, Can Tho, Vietnam
Vu Van Long: Faculty of Natural Resources - Environment, Kien Giang University, Kien Giang, Vietnam
Chau Thi Da: Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Plant, Soil and Environment, 2022, vol. 68, issue 1, 29-35

Abstract: This study investigated the influence of soil undergoing different crop rotations on the CH4, CO2 emissions, and decomposition of rice straw. The studied soil undergoing crop rotation systems were rice-rice-rice (SR) and baby corn-rice-mungbean (SB). Two main microcosm set-ups: anaerobic (SR-AN, SB-AN) and aerobic (SR-AE, SB-AE) conditions. Litter bags containing rice stems were inserted into the soil and recollected at different time points for chemical analysing and the gas sampling was collected to measure the CO2 and CH4 emissions. The results indicated that the total carbon (TC) decreased around 30%, and the TC removal in anaerobic was significantly higher than in aerobic conditions. The residue cellulose content varied in a range from 68.2% to 78.6%, while the hemicellulose content varied from 57.4% to 69.3% at day 50 after incorporation. There were no significant differences in the total nitrogen removal, cellulose, hemicellulose, and lignin contents among the microcosm set-ups. CO2 emission increased in all the microcosm set-ups with the treatments without rice straw (CTSR, CTSB) in both aerobic and anaerobic conditions. CH4 release in the SR-AN treatments did not differ significantly compared with the SB-AN treatments. This study confirmed that the decomposition of rice straw residues is faster in the anaerobic paddy soil condition compared to the aerobic crop rotation condition.

Keywords: degradation; greenhouse gases emission; Oryza sativa L.; paddy field; upland soil (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://pse.agriculturejournals.cz/doi/10.17221/304/2021-PSE.html (text/html)
http://pse.agriculturejournals.cz/doi/10.17221/304/2021-PSE.pdf (application/pdf)
free of charge

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:caa:jnlpse:v:68:y:2022:i:1:id:304-2021-pse

DOI: 10.17221/304/2021-PSE

Access Statistics for this article

Plant, Soil and Environment is currently edited by Kateřina Součková

More articles in Plant, Soil and Environment from Czech Academy of Agricultural Sciences
Bibliographic data for series maintained by Ivo Andrle ().

 
Page updated 2025-03-19
Handle: RePEc:caa:jnlpse:v:68:y:2022:i:1:id:304-2021-pse