The effect of deep-tillage depths on crop yield: A global meta-analysis
Shangshu Huang,
Mahbub Ul Islam and
Fahui Jiang
Additional contact information
Shangshu Huang: College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, P.R. China
Mahbub Ul Islam: Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
Fahui Jiang: College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, P.R. China
Plant, Soil and Environment, 2023, vol. 69, issue 3, 105-117
Abstract:
The tillage depth plays a critical role in solving soil compaction - a global problem of soil degradation. However, to date, there are few research reported about tillage depth, and the standard of optimum tillage depth is lacking. Therefore, we conducted a meta-analysis to quantify the effect of tillage depths on crop yield across a global scale, and then to analysis their influence factors such as local climate, soil properties, and managements. Moreover, a global distribution of the optimal tillage depths was estimated by using a random-forest model. Overall, our result demonstrated that crop yield first increased within tillage depths from 25 to 35 cm, and then reduced under higher depth of deep tillage compared to conventional tillage, according to 1109 wheat, maize and soybean (WMS) yield observations from 202 studies and 109 publications. Visibly, 35 cm hence became the optimum tillage depth of WMS across the world, while it varies with different regions. Furthermore, higher crop yields observed in areas with a humid climate, high clay contents, and large bulk density under the optimal depth 40, 35 and 45 cm, respectively. In contrast, a lower yield was observed in areas with arid climates, silty and sandy soils, and lower bulk density within optimal depth of 25 cm, 30 cm, and 25 to 35 cm. Human management efforts, including fertilizer addition, irrigation, straw returning, and changing of cropping system or crop species mostly increased the crop yield under deep tillage. Particularly, our meta-analysis indicated that straw returning needs a greater depth. Finally, we predicted the distributions of optimum depths, which showed that 30 and 35 cm were the optimum tillage depths in the temperate and tropical regions, and the total crop yields of global WMS increased by 2689 million tons per year under the optimal tillage depth, compared with the conventional tillage.
Keywords: conventional tillage; random-forest; best tillage depth; tillage management; subsoiling (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://pse.agriculturejournals.cz/doi/10.17221/373/2022-PSE.html (text/html)
http://pse.agriculturejournals.cz/doi/10.17221/373/2022-PSE.pdf (application/pdf)
free of charge
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:caa:jnlpse:v:69:y:2023:i:3:id:373-2022-pse
DOI: 10.17221/373/2022-PSE
Access Statistics for this article
Plant, Soil and Environment is currently edited by Kateřina Součková
More articles in Plant, Soil and Environment from Czech Academy of Agricultural Sciences
Bibliographic data for series maintained by Ivo Andrle ().