The impact of organic selenium on the growth and physiological traits of Salvia miltiorrhiza Bunge. seedlings
Yi Luo,
Xiaoqing Zhang,
Yibo Zhang and
Changjuan Shan
Additional contact information
Yi Luo: Henan Institute of Science and Technology, Xinxiang, P.R. China
Xiaoqing Zhang: Henan Institute of Science and Technology, Xinxiang, P.R. China
Yibo Zhang: Henan Institute of Science and Technology, Xinxiang, P.R. China
Changjuan Shan: Henan Institute of Science and Technology, Xinxiang, P.R. China
Plant, Soil and Environment, 2025, vol. 71, issue 4, 269-277
Abstract:
This study examined the impact of selenomethionine (SeMet) on the growth and physiological traits of Salvia miltiorrhiza seedlings. Application of SeMet significantly improved the photosynthetic performance by reducing stomatal limitation value (Ls) and increasing soil and plant analyser development (SPAD) value, net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (gs) and water use efficiency (WUE), compared to the control. Furthermore, SeMet also improved the photosynthetic performance by reducing non-photochemical quenching (NPQ) and increasing the actual photochemical efficiency of photosystem II (Y(II)), photochemical quenching (qP), maximum photochemical efficiency of PSII (Fv/Fm) and apparent electron transport rate (ETR). Meanwhile, the findings indicated that SeMet was able to enhance the antioxidant capacity of S. miltiorrhiza seedlings by increasing the activities of antioxidant enzymes ascorbate peroxidase (APX), glutathione reductase (GR), peroxidase (POD), catalase (CAT) and superoxide dismutase (SOD), thereby reducing the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2). Besides, SeMet notably impacted plant growth by promoting plant height, basal diameter and biomass. Among different concentrations, 60 mg/L exhibited the most favourable impact on photosynthetic performance, antioxidant capacity and the growth of S. miltiorrhiza seedlings. In summary, the appropriate dosage of SeMet can stimulate the growth of S. miltiorrhiza by enhancing photosynthetic and antioxidant capacities. These findings can serve as a solid theoretical foundation for the application of SeMet in the cultivation and production of S. miltiorrhiza.
Keywords: Chinese red sage; medicinal herb; chlorophyll fluorescence properties; antioxidant activity (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://pse.agriculturejournals.cz/doi/10.17221/348/2024-PSE.html (text/html)
http://pse.agriculturejournals.cz/doi/10.17221/348/2024-PSE.pdf (application/pdf)
free of charge
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:caa:jnlpse:v:71:y:2025:i:4:id:348-2024-pse
DOI: 10.17221/348/2024-PSE
Access Statistics for this article
Plant, Soil and Environment is currently edited by Kateřina Součková
More articles in Plant, Soil and Environment from Czech Academy of Agricultural Sciences
Bibliographic data for series maintained by Ivo Andrle ().