Comparison of different approaches to LS factor calculations based on a measured soil loss under simulated rainfall
Michaela Hrabalíková and
Miloslav Janeček
Additional contact information
Michaela Hrabalíková: Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
Miloslav Janeček: Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
Soil and Water Research, 2017, vol. 12, issue 2, 69-77
Abstract:
Geographic Information Systems (GIS) in combination with soil loss models can enhance evaluation of soil erosion estimation. SAGA and ARC/INFO geographic information systems were used to estimate the topographic (LS) factor of the Universal Soil Loss Equation (USLE) that in turn was used to calculate the soil erosion on a long-term experimental plot near Prague in the Czech Republic. To determine the influence of a chosen algorithm on the soil erosion estimates a digital elevation model with high accuracy (1 × 1 m) and a measured soil loss under simulated rainfall were used. These then provided input for five GIS-based and two manual procedures of computing the combined slope length and steepness factor in the (R)USLE. The results of GIS-based (R)USLE erosion estimates from the seven procedures were compared to the measured soil loss from the 11 m long experimental plot and from 38 rainfall simulations performed here during 15 years. The results indicate that the GIS-based (R)USLE soil loss estimates from five different approaches to calculation of LS factor are lower than the measured average annual soil loss. The two remaining approaches over-predicted the measured soil loss. The best method for LS factor estimation on field scale is the original manual method of the USLE, which predicted the average soil loss with 6% difference from the measured soil loss. The second method is the GIS-based method that concluded a difference of 8%. The results of this study show the need for further work in the area of soil erosion estimation (with particular focus on the rill/interrill ratio) using the GIS and USLE. The study also revealed the need for an application of the same approach to catchment area as it might bring different outcomes.
Keywords: geographic information systems; topographic factor; universal soil loss equation; water erosion (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://swr.agriculturejournals.cz/doi/10.17221/222/2015-SWR.html (text/html)
http://swr.agriculturejournals.cz/doi/10.17221/222/2015-SWR.pdf (application/pdf)
free of charge
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:caa:jnlswr:v:12:y:2017:i:2:id:222-2015-swr
DOI: 10.17221/222/2015-SWR
Access Statistics for this article
Soil and Water Research is currently edited by Ing. Markéta Knížková, (Executive Editor)
More articles in Soil and Water Research from Czech Academy of Agricultural Sciences
Bibliographic data for series maintained by Ivo Andrle ().