EconPapers    
Economics at your fingertips  
 

Soil structure after 18 years of long-term different tillage systems and fertilisation in Haplic Luvisol

Vladimír Šimanský and Martin Lukáč
Additional contact information
Vladimír Šimanský: Department of Soil Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovak Republic;
Martin Lukáč: School of Agriculture, Policy and Development, University of Reading, Reading, UK

Soil and Water Research, 2018, vol. 13, issue 3, 140-149

Abstract: Soil structure is a key determinant of many soil environmental processes and is essential for supporting terrestrial ecosystem productivity. Management of arable soils plays a significant role in forming and maintaining their structure. Between 1994 and 2011, we studied the influence of soil tillage and fertilisation regimes on the stability of soil structure of loamy Haplic Luvisol in a replicated long-term field experiment in the Dolná Malanta locality (Slovakia). Soil samples were repeatedly collected from plots exposed to the following treatments: conventional tillage (CT) and minimum tillage (MT) combined with conventional (NPK) and crop residue-enhanced fertilisation (CR+NPK). MT resulted in an increase of critical soil organic matter content (St) by 7% in comparison with CT. Addition of crop residues and NPK fertilisers significantly increased St values (by 7%) in comparison with NPK-only treatments. Soil tillage and fertilisation did not have any significant impact on other parameters of soil structure such as dry sieving mean weight diameters (MWD), mean weight diameter of water-stable aggregates (MWDWSA), vulnerability coefficient (Kv), stability index of water-stable aggregates (Sw), index of crusting (Ic), contents of water-stable macro- (WSAma) and micro-aggregates (WSAmi). Ic was correlated with organic matter content in all combinations of treatments. Surprisingly, humus quality did not interact with soil management practices to affect soil structure parameters. Higher sums of base cations, CEC and base saturation (Bs) were linked to higher Sw values, however higher values of hydrolytic acidity (Ha) resulted in lower aggregate stability in CT treatments. Higher content of K+ was responsible for higher values of MWDWSA and MWD in CT. In MT, contents of Ca2+, Mg2+ and Na+ were significantly correlated with contents of WSAmi and WSAma. Higher contents of Na+ negatively affected St values and positive correlations were detected between Ca2+, Mg2+ and Na+ and Ic in NPK treatments.

Keywords: different soil management; index of crusting; soil organic matter; soil structure; vulnerability coefficient; water-stable aggregates (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://swr.agriculturejournals.cz/doi/10.17221/38/2017-SWR.html (text/html)
http://swr.agriculturejournals.cz/doi/10.17221/38/2017-SWR.pdf (application/pdf)
free of charge

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:caa:jnlswr:v:13:y:2018:i:3:id:38-2017-swr

DOI: 10.17221/38/2017-SWR

Access Statistics for this article

Soil and Water Research is currently edited by Ing. Markéta Knížková, (Executive Editor)

More articles in Soil and Water Research from Czech Academy of Agricultural Sciences
Bibliographic data for series maintained by Ivo Andrle ().

 
Page updated 2025-03-19
Handle: RePEc:caa:jnlswr:v:13:y:2018:i:3:id:38-2017-swr