Drought stress tolerance of two wheat genotypes
András Lukács,
Géza Pártay,
Tamás Németh,
Szilveszter Csorba and
Csilla Farkas
Additional contact information
András Lukács: Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences (RISSAC), Budapest, Hungary
Géza Pártay: Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences (RISSAC), Budapest, Hungary
Tamás Németh: Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences (RISSAC), Budapest, Hungary
Szilveszter Csorba: Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences (RISSAC), Budapest, Hungary
Csilla Farkas: Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences (RISSAC), Budapest, Hungary
Soil and Water Research, 2008, vol. 3, issue SpecialIssue1, S95-S104
Abstract:
Biotic and abiotic stress effects can limit the productivity of plants to great extent. In Hungary, drought is one of the most important constrains of biomass production, even at the present climatic conditions. The climate change scenarios, developed for the Carpathian basin for the nearest future predict further decrease in surface water resources. Consequently, it is essential to develop drought stress tolerant wheat genotypes to ensure sustainable and productive wheat production under changed climate conditions. The aim of the present study was to compare the stress tolerance of two winter wheat genotypes at two different scales. Soil water regime and development of plants, grown in a pot experiment and in large undisturbed soil columns were evaluated. The pot experiments were carried out in a climatic room in three replicates. GK Élet wheat genotype was planted in six, and Mv Emese in other six pots. Two pots were left without plant for evaporation studies. Based on the mass of the soil columns without plant the evaporation from the bare soil surface was calculated in order to distinguish the evaporation and the transpiration with appropriate precision. A complex stress diagnosis system was developed to monitor the water balance elements. ECH2O type capacitive soil moisture probes were installed in each of the pots to perform soil water content measurements four times a day. The irrigation demand was determined according to the hydrolimits, derived from soil hydrophysical properties. In case of both genotypes three plants were provided with the optimum water supply, while the other three ones were drought-stressed. In the undisturbed soil columns, the same wheat genotypes were sawn in one replicate. Similar watering strategy was applied. TDR soil moisture probes were installed in the soil at various depths to monitor changes in soil water content. In order to study the drought stress reaction of the wheat plants, microsensors of 1.6 mm diameter were implanted into the stems and connected to a quadrupole mass spectrometer for gas analysis. The stress status was indicated in the plants grown on partly non-irrigated soil columns by the lower CO2 level at both genotypes. It was concluded that the developed stress diagnosis system could be used for soil water balance elements calculations. This enables more precise estimation of plant water consumption in order to evaluate the drought sensitivity of different wheat genotypes.
Keywords: drought stress; wheat genotypes; gas metabolism; soil water content; stress diagnosis system (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://swr.agriculturejournals.cz/doi/10.17221/10/2008-SWR.html (text/html)
http://swr.agriculturejournals.cz/doi/10.17221/10/2008-SWR.pdf (application/pdf)
free of charge
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:caa:jnlswr:v:3:y:2008:i:specialissue1:id:10-2008-swr
DOI: 10.17221/10/2008-SWR
Access Statistics for this article
Soil and Water Research is currently edited by Ing. Markéta Knížková, (Executive Editor)
More articles in Soil and Water Research from Czech Academy of Agricultural Sciences
Bibliographic data for series maintained by Ivo Andrle ().