EconPapers    
Economics at your fingertips  
 

Etalonnages du taux de croissance du PIB français sur la base des enquêtes de conjoncture

Marie Bessec ()

Economie & Prévision, 2010, vol. n° 193, issue 2, 77-99

Abstract: This paper discusses new bridge models for short-term forecasting of French quarterly GDP growth. The only data used are from business surveys in French manufacturing, services, and construction. We consider two alternative methods. The first relies on the general-to-specific (GETS) algorithm applied to blocks of randomly selected variables (Hendry and Krolzig, 2005)?; the other relies on the combination method popularized by Stock and Watson (2004). We conduct in-sample and out-of-sample assessments of both methods using recursive and rolling regressions. We show that the forecast based on an automatic regression-model selection (GETS) performs better, and that extending the database to business surveys in the service and construction sectors can be useful for short-term GDP forecasting.

Keywords: GDP forecasting; business surveys; model selection; forecast combination (search for similar items in EconPapers)
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (2) Track citations by RSS feed

Downloads: (external link)
http://www.cairn.info/load_pdf.php?ID_ARTICLE=ECOP_193_0077 (application/pdf)
http://www.cairn.info/revue-economie-et-prevision-1-2010-2-page-77.htm (text/html)
free

Related works:
Journal Article: Étalonnages du taux de croissance du PIB français sur la base des enquêtes de conjoncture (2010) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cai:ecoldc:ecop_193_0077

Access Statistics for this article

More articles in Economie & Prévision from La Documentation Française
Bibliographic data for series maintained by Jean-Baptiste de Vathaire ().

 
Page updated 2021-10-12
Handle: RePEc:cai:ecoldc:ecop_193_0077