Segmentation spatiale et choix de la forme fonctionnelle en modélisation hédonique
Jean Dubé,
François Des Rosiers and
Marius Thériault
Revue d'économie régionale et urbaine, 2011, vol. février, issue 1, 9-37
Abstract:
This paper investigates the possibility of accounting for market heterogeneity within the hedonic price equation using a nested model. Using a predefined definition of submarkets, different specifications of the hedonic price equation are estimated for Quebec City, Canada. If the options considered are at least better than the classical approach given the spatial drift of hedonic prices of the residential amenities, nothing suggests that a disaggregate approach is necessarily the better modelling option. We show how the log-linear model can be improved by integrating location dummy variables capturing submarket fixed effects. Although such an approach does not solve all the problems associated with the classic hedonic pricing model, it largely lessens their detrimental impact while insuring the stability of regression coefficients related to physical amenities of properties.
Keywords: hedonic price model; single-family home prices; temporal stability; submarkets (search for similar items in EconPapers)
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.cairn.info/load_pdf.php?ID_ARTICLE=RERU_111_0009 (application/pdf)
http://www.cairn.info/revue-d-economie-regionale-et-urbaine-2011-1-page-9.htm (text/html)
free
Related works:
Journal Article: Segmentation spatiale et choix de la forme fonctionnelle en modélisation hédonique* (2012) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cai:rerarc:reru_111_0009
Access Statistics for this article
More articles in Revue d'économie régionale et urbaine from Armand Colin
Bibliographic data for series maintained by Jean-Baptiste de Vathaire ().