Estimation of domain means on the basis of strategy dependent on depth function of auxiliary variables` distribution
Janusz L. Wywiał ()
Statistics in Transition new series, 2011, vol. 12, issue 1, 127-138
Abstract:
The paper deals with the problem of estimation of a domain means in a finite and fixed population. We assume that observations of a multidimensional auxiliary variable are known in the population. The proposed estimation strategy consists of the well known Horvitz-Thompson estimator and the non-simple sampling design dependent on a synthetic auxiliary variable whose observations are equal to the values of a depth function of the auxiliary variable distribution. The well known spherical and Mahalanobis depth functions are considered. A sampling design is proportionate to the maximal order statistic determined on the basis of the synthetic auxiliary variable observations in a simple sample drawn without replacement. A computer simulation analysis leads to the conclusion that the proposed estimation strategy is more accurate for domain means than the well known simple sample means.
Keywords: sampling design; order statistic; auxiliary variable; sampling scheme; Horvitz-Thompson estimator; small area estimation; area sampling; depth function (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://index.stat.gov.pl/repec/files/csb/stintr/csb_stintr_v12_2011_i1_n9.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:csb:stintr:v:12:y:2011:i:1:p:127-138
Access Statistics for this article
Statistics in Transition new series is currently edited by Włodzimierz Okrasa
More articles in Statistics in Transition new series from Główny Urząd Statystyczny (Polska) Contact information at EDIRC.
Bibliographic data for series maintained by Beata Witek ( this e-mail address is bad, please contact ).