Economics at your fingertips  

Symbolic approach in regional analyses

Justyna Wilk ()

Statistics in Transition new series, 2012, vol. 13, issue 3, 581-600

Abstract: Regional studies cover a spectrum of diversified phenomena and problems including social, economic and environmental ones, which refer to territorial units. Owing to their specific characteristics they are most frequently of both multivariate and complex nature. Conducting regional research is associated with the need to consider such difficulties as large data sets, insufficient precision of phenomena description, disregarding territorial diversification of a given phenomenon, as well as incomplete description of problems. The objective of the paper is to suggest solutions to these problems by means of symbolic approach application which basically consists in presenting phenomena in the form of symbolic data. The first part of the paper discusses specific nature of symbolic data, methods for collecting symbolic data and methods for these data analysis. The second part presents an empirical example referring to the assessment of labour market situation in Polish regions (NTS-2) using symbolic data and cluster analysis.

Keywords: symbolic approach; symbolic data analysis; cluster analysis; regional research; labour market (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3) Track citations by RSS feed

Downloads: (external link) (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Statistics in Transition new series is currently edited by Włodzimierz Okrasa

More articles in Statistics in Transition new series from Główny Urząd Statystyczny (Polska) Contact information at EDIRC.
Bibliographic data for series maintained by Beata Witek ().

Page updated 2023-11-11
Handle: RePEc:csb:stintr:v:13:y:2012:i:3:p:581-600