Model of latent profile factor analysis for ordered categorical data
Piotr Tarka ()
Statistics in Transition new series, 2013, vol. 14, issue 1, 171-182
Abstract:
In the literature factor analysis is admittedly a well-known and effective multivariate method in the reduction of extensive and broad data, e.g., in the analysis of too many variables. It is also known for the process of unidimensional or multidimensional scale/s construction. Typically, in many studies (especially those pertaining to market research area) a common factor analysis solution is used (based on continuous data). However, there are rarely ever undertaken studies pertaining to latent variable models where other type of data is used based on discrete variables. One of these models might be called Latent Profile Factor Analysis - LPFA. In this article author’s main objective is to propose and discuss its (LPFA) main assumptions. In order to prove the model’s functionality in practice of market research, a brief example of LPFA model for ordered categorical data (based on one-factorial solution) in reference to hedonic consumption data is given at the end of the paper.
Keywords: latent profile factor analysis model; ordered categorical data (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://index.stat.gov.pl/repec/files/csb/stintr/csb_stintr_v14_2013_i1_n12.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:csb:stintr:v:14:y:2013:i:1:p:171-182
Access Statistics for this article
Statistics in Transition new series is currently edited by Włodzimierz Okrasa
More articles in Statistics in Transition new series from Główny Urząd Statystyczny (Polska) Contact information at EDIRC.
Bibliographic data for series maintained by Beata Witek ( this e-mail address is bad, please contact ).