Bayesian inference for exponentiated Pareto model with application to bladder cancer remission time
Umesh Singh,
Manoj Kumar and
Sanjay Kumar Singh
Statistics in Transition new series, 2014, vol. 15, issue 3, 403-426
Abstract:
Maximum likelihood and Bayes estimators of the unknown parameters and the expected experiment times of the exponentiated Pareto model have been obtained for progressive type-II censored data with binomial removal scheme. Markov Chain Monte Carlo (MCMC) method is used to compute the Bayes estimates of the parameters of interest. The generalized entropy loss function and squared error loss function have been considered for obtaining the Bayes estimators. Comparisons are made between Bayesian and maximum likelihood (ML) estimators via Monte Carlo simulation. The proposed methodology is illustrated through real data.
Keywords: PT-II CBR; MLE; bayes estimators; average experiment time (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://index.stat.gov.pl/repec/files/csb/stintr/csb_stintr_v15_2015_i3_n5.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:csb:stintr:v:15:y:2014:i:3:p:403-426
Access Statistics for this article
Statistics in Transition new series is currently edited by Włodzimierz Okrasa
More articles in Statistics in Transition new series from Główny Urząd Statystyczny (Polska) Contact information at EDIRC.
Bibliographic data for series maintained by Beata Witek ( this e-mail address is bad, please contact ).