Functional Regression in Short-Term Prediction of Economic Time Series
Daniel Kosiorowski ()
Statistics in Transition new series, 2014, vol. 15, issue 4, 611-626
Abstract:
We compare four methods of forecasting functional time series including fully functional regression, functional autoregression FAR(1) model, Hyndman & Shang principal component scores forecasting using one-dimensional time series method, and moving functional median. Our comparison methods involve simulation studies as well as analysis of empirical dataset concerning the Internet users behaviours for two Internet services in 2013. Our studies reveal that Hyndman & Shao predicting method outperforms other methods in the case of stationary functional time series without outliers, and the moving functional median induced by Frainman & Muniz depth for functional data outperforms other methods in the case of smooth departures from stationarity of the time series as well as in the case of functional time series containing outliers.
Keywords: functional data analysis; functional time series; prediction (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://index.stat.gov.pl/repec/files/csb/stintr/csb_stintr_v15_2014_i4_n8.pdf Main text (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:csb:stintr:v:15:y:2014:i:4:p:611-626
Access Statistics for this article
Statistics in Transition new series is currently edited by Włodzimierz Okrasa
More articles in Statistics in Transition new series from Główny Urząd Statystyczny (Polska) Contact information at EDIRC.
Bibliographic data for series maintained by Beata Witek ( this e-mail address is bad, please contact ).