An application of Markov chain Monte Carlo (MCMC) to continuous-time incurred but not yet reported (IBNYR) events
Garfield O. Brown and
Winston S. Buckley
Annals of Actuarial Science, 2016, vol. 10, issue 2, 270-284
Abstract:
We develop a Bayesian model for continuous-time incurred but not yet reported (IBNYR) events under four types of secondary data, and show that unreported events, such as claims, have a Poisson distribution with a reduced arrival parameter if event arrivals are Poisson distributed. Using insurance claims as an example of an IBNYR event, we apply Markov chain Monte Carlo (MCMC) to the continuous-time IBNYR claims model of Jewell using Type I and Type IV data. We illustrate the relative stability of the MCMC method versus the Gammoid approximation of Jewell by showing that the MCMC estimates approach their prior parameters, while the Gammoid approximations grow without bound for Type IV data. Moreover, this holds for any distribution that the delay parameter is assumed to follow. Our framework also allows for the computation of posterior confidence intervals for the parameters.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:10:y:2016:i:02:p:270-284_00
Access Statistics for this article
More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().