A stochastic Expectation–Maximisation (EM) algorithm for construction of mortality tables
Luz Judith R. Esparza and
Fernando Baltazar-Larios
Annals of Actuarial Science, 2018, vol. 12, issue 1, 1-22
Abstract:
In this paper, we present an extension of the model proposed by Lin & Liu that uses the concept of physiological age to model the ageing process by using phase-type distributions to calculate the probability of death. We propose a finite-state Markov jump process to model the hypothetical ageing process in which it is possible the transition rates between non-consecutive physiological ages. Since the Markov process has only a single absorbing state, the death time follows a phase-type distribution. Thus, to build a mortality table the challenge is to estimate this matrix based on the records of the ageing process. Considering the nature of the data, we consider two cases: having continuous time information of the ageing process, and the more interesting and realistic case, having reports of the process just in determined times. If the ageing process is only observed at discrete time points we have a missing data problem, thus, we use a stochastic Expectation–Maximisation (SEM) algorithm to find the maximum likelihood estimator of the intensity matrix. And in order to do that, we build Markov bridges which are sampled using the Bisection method. The theory is illustrated by a simulation study and used to fit real data.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:12:y:2018:i:01:p:1-22_00
Access Statistics for this article
More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().