EconPapers    
Economics at your fingertips  
 

Forecasting age distribution of death counts: an application to annuity pricing

Han Lin Shang and Steven Haberman

Annals of Actuarial Science, 2020, vol. 14, issue 1, 150-169

Abstract: We consider a compositional data analysis approach to forecasting the age distribution of death counts. Using the age-specific period life-table death counts in Australia obtained from the Human Mortality Database, the compositional data analysis approach produces more accurate 1- to 20-step-ahead point and interval forecasts than Lee–Carter method, Hyndman–Ullah method and two naïve random walk methods. The improved forecast accuracy of period life-table death counts is of great interest to demographers for estimating survival probabilities and life expectancy, and to actuaries for determining temporary annuity prices for various ages and maturities. Although we focus on temporary annuity prices, we consider long-term contracts that make the annuity almost lifetime, in particular when the age at entry is sufficiently high.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:14:y:2020:i:1:p:150-169_9

Access Statistics for this article

More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-23
Handle: RePEc:cup:anacsi:v:14:y:2020:i:1:p:150-169_9