Insurance ratemaking using the Exponential-Lognormal regression model
George Tzougas,
Woo Hee Yik and
Muhammad Waqar Mustaqeem
Annals of Actuarial Science, 2020, vol. 14, issue 1, 42-71
Abstract:
This paper is concerned with presenting the Exponential-Lognormal (ELN) regression model as a competitive alternative to the Pareto, or Exponential-Inverse Gamma, regression model that has been used in a wide range of areas, including insurance ratemaking. This is the first time that the ELN regression model is used in a statistical or actuarial context. The main contribution of the study is that we illustrate how maximum likelihood estimation of the ELN regression model, which does not have a density in closed form, can be accomplished relatively easily via an Expectation-Maximisation type algorithm. A real data application based on motor insurance data is examined in order to emphasise the versatility of the proposed algorithm. Finally, assuming that the number of claims is distributed according to the classic Negative Binomial and Poisson-Inverse Gaussian regression models, both the a priori and a posteriori, or Bonus–Malus, premium rates resulting from the ELN regression model are calculated via the net premium principle and compared to those determined by the Pareto regression model that has been traditionally used for modelling claim sizes.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:14:y:2020:i:1:p:42-71_3
Access Statistics for this article
More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().