Forecasting health expenses using a functional data model
Jens Piontkowski
Annals of Actuarial Science, 2020, vol. 14, issue 1, 72-82
Abstract:
Traditionally, actuaries make their predictions based on simple, robust methods. Stochastic models become increasingly popular because they can enrich the point estimates with error estimates or even provide the whole probability distribution. Here, we construct such a model for German inpatient health expenses per age using the functional data approach. This allows us to see in which age groups the expenses change the most and where predictions are most uncertain. Jumps in the derived model parameters indicate that 3 years might be outliers. In fact, they can be explained by changes in the reimbursement system and must be dealt with. As an application, we compute the probability distribution of the total health expenses in the upcoming years.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:14:y:2020:i:1:p:72-82_4
Access Statistics for this article
More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().