On unbalanced data and common shock models in stochastic loss reserving
Benjamin Avanzi,
Greg Taylor,
Phuong Anh Vu and
Bernard Wong
Annals of Actuarial Science, 2021, vol. 15, issue 1, 173-203
Abstract:
Introducing common shocks is a popular dependence modelling approach, with some recent applications in loss reserving. The main advantage of this approach is the ability to capture structural dependence coming from known relationships. In addition, it helps with the parsimonious construction of correlation matrices of large dimensions. However, complications arise in the presence of “unbalanced data”, that is, when (expected) magnitude of observations over a single triangle, or between triangles, can vary substantially. Specifically, if a single common shock is applied to all of these cells, it can contribute insignificantly to the larger values and/or swamp the smaller ones, unless careful adjustments are made. This problem is further complicated in applications involving negative claim amounts. In this paper, we address this problem in the loss reserving context using a common shock Tweedie approach for unbalanced data. We show that the solution not only provides a much better balance of the common shock proportions relative to the unbalanced data, but it is also parsimonious. Finally, the common shock Tweedie model also provides distributional tractability.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:15:y:2021:i:1:p:173-203_8
Access Statistics for this article
More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().