Clustering driving styles via image processing
Rui Zhu and
Mario V. Wüthrich
Annals of Actuarial Science, 2021, vol. 15, issue 2, 276-290
Abstract:
It has become of key interest in the insurance industry to understand and extract information from telematics car driving data. Telematics car driving data of individual car drivers can be summarised in so-called speed–acceleration heatmaps. The aim of this study is to cluster such speed–acceleration heatmaps to different categories by analysing similarities and differences in these heatmaps. Making use of local smoothness properties, we propose to process these heatmaps as RGB images. Clustering can then be achieved by involving supervised information via a transfer learning approach using the pre-trained AlexNet to extract discriminative features. The K-means algorithm is then applied on these extracted discriminative features for clustering. The experiment results in an improvement of heatmap clustering compared to classical approaches.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:15:y:2021:i:2:p:276-290_5
Access Statistics for this article
More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().