EconPapers    
Economics at your fingertips  
 

Mortality forecasting using a Lexis-based state-space model

Patrik Andersson and Mathias Lindholm

Annals of Actuarial Science, 2021, vol. 15, issue 3, 519-548

Abstract: A new method of forecasting mortality is introduced. The method is based on the continuous-time dynamics of the Lexis diagram, which given weak assumptions implies that the death count data are Poisson distributed. The underlying mortality rates are modelled with a hidden Markov model (HMM) which enables a fully likelihood-based inference. Likelihood inference is done by particle filter methods, which avoids approximating assumptions and also suggests natural model validation measures. The proposed model class contains as special cases many previous models with the important difference that the HMM methods make it possible to estimate the model efficiently. Another difference is that the population and latent variable variability can be explicitly modelled and estimated. Numerical examples show that the model performs well and that inefficient estimation methods can severely affect forecasts.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:15:y:2021:i:3:p:519-548_5

Access Statistics for this article

More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:anacsi:v:15:y:2021:i:3:p:519-548_5