Using a stochastic economic scenario generator to analyse uncertain superannuation and retirement outcomes
Wen Chen,
Bonsoo Koo,
Yunxiao Wang,
O’Hare, Colin,
Nicolas Langrené,
Peter Toscas and
Zili Zhu
Annals of Actuarial Science, 2021, vol. 15, issue 3, 549-566
Abstract:
The retirement systems in many developed countries have been increasingly moving from defined benefit towards defined contribution system. In defined contribution systems, financial and longevity risks are shifted from pension providers to retirees. In this paper, we use a probabilistic approach to analyse the uncertainty associated with superannuation accumulation and decumulation. We apply an economic scenario generator called the Simulation of Uncertainty for Pension Analysis (SUPA) model to project uncertain future financial and economic variables. This multi-factor stochastic investment model, based on the Monte Carlo method, allows us to obtain the probability distribution of possible outcomes regarding the superannuation accumulation and decumulation phases, such as relevant percentiles. We present two examples to demonstrate the implementation of the SUPA model for the uncertainties during both phases under the current superannuation and Age Pension policy, and test two superannuation policy reforms suggested by the Grattan Institute.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:15:y:2021:i:3:p:549-566_6
Access Statistics for this article
More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().