EconPapers    
Economics at your fingertips  
 

Extracting information from textual descriptions for actuarial applications

Scott Manski, Kaixu Yang, Gee Y. Lee and Tapabrata Maiti

Annals of Actuarial Science, 2021, vol. 15, issue 3, 605-622

Abstract: Initial insurance losses are often reported with a textual description of the claim. The claims manager must determine the adequate case reserve for each known claim. In this paper, we present a framework for predicting the amount of loss given a textual description of the claim using a large number of words found in the descriptions. Prior work has focused on classifying insurance claims based on keywords selected by a human expert, whereas in this paper the focus is on loss amount prediction with automatic word selection. In order to transform words into numeric vectors, we use word cosine similarities and word embedding matrices. When we consider all unique words found in the training dataset and impose a generalised additive model to the resulting explanatory variables, the resulting design matrix is high dimensional. For this reason, we use a group lasso penalty to reduce the number of coefficients in the model. The scalable, analytical framework proposed provides for a parsimonious and interpretable model. Finally, we discuss the implications of the analysis, including how the framework may be used by an insurance company and how the interpretation of the covariates can lead to significant policy change. The code can be found in the TAGAM R package (github.com/scottmanski/TAGAM).

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:15:y:2021:i:3:p:605-622_8

Access Statistics for this article

More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:anacsi:v:15:y:2021:i:3:p:605-622_8