Joint modelling of male and female mortality rates using adaptive P-splines
Kai Hon Tang,
Erengul Dodd and
Jonathan J. Forster
Annals of Actuarial Science, 2022, vol. 16, issue 1, 119-135
Abstract:
Raw mortality data often exhibit irregular patterns due to randomness. Graduation refers to the act of smoothing crude mortality rates. In this paper, we propose a flexible and robust methodology for graduating mortality rates using adaptive P-splines. Since the observed data at high ages are often sparse and unreliable, we use an exponentially increasing penalty. We use mortality data of England and Wales and model male and female mortality rates jointly by means of penalties, achieving borrowing of information between the two sexes.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:16:y:2022:i:1:p:119-135_7
Access Statistics for this article
More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().