A robust random coefficient regression representation of the chain-ladder method
Ioannis Badounas,
Apostolos Bozikas and
Georgios Pitselis
Annals of Actuarial Science, 2022, vol. 16, issue 1, 151-182
Abstract:
It is well known that the presence of outliers can mis-estimate (underestimate or overestimate) the overall reserve in the chain-ladder method, when we consider a linear regression model, based on the assumption that the coefficients are fixed and identical from one observation to another. By relaxing the usual regression assumptions and applying a regression with randomly varying coefficients, we have a similar phenomenon, i.e., mis-estimation of the overall reserves. The lack of robustness of loss reserving regression with random coefficients on incremental payment estimators leads to the development of this paper, aiming to apply robust statistical procedures to the loss reserving estimation when regression coefficients are random. Numerical results of the proposed method are illustrated and compared with the results that were obtained by linear regression with fixed coefficients.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:16:y:2022:i:1:p:151-182_9
Access Statistics for this article
More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().