EconPapers    
Economics at your fingertips  
 

Unbiased estimator for the ultimate claim prediction error in the chain-ladder model of Mack

Filippo Siegenthaler

Annals of Actuarial Science, 2023, vol. 17, issue 1, 118-144

Abstract: We propose a new estimator for the ultimate prediction uncertainty within the famous Mack’s distribution-free chain-ladder model, which can be proved to be unbiased (conditionally given the first triangle column) under some additional technical assumptions. A peculiar behaviour of the unbiased estimator is given by its possible negativity. This is a drawback which might be worth trading off for the unbiasedness property, since there is empirical evidence that the likelihood of a negative realisation is extremely low. This offers an alternative to the well-known Mack and BBMW formulas since the latters can be proved to be biased. However, we also show that this novel estimator, as well as the Mack and BBMW formulas, can (with non-negligible probability) materially fail to estimate the true uncertainty.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:17:y:2023:i:1:p:118-144_6

Access Statistics for this article

More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:anacsi:v:17:y:2023:i:1:p:118-144_6