Bonus-Malus Scale models: creating artificial past claims history
Jean-Philippe Boucher
Annals of Actuarial Science, 2023, vol. 17, issue 1, 36-62
Abstract:
In recent papers, Bonus-Malus Scales (BMS) estimated using data have been considered as an alternative to longitudinal data and hierarchical data approaches to model the dependence between different contracts for the same insured. Those papers, however, did not discuss in detail how to construct and understand BMS models, and many of the BMS’s basic properties were not discussed. The first objective of this paper is to correct this situation by explaining the logic behind BMS models and by describing those properties. More particularly, we will explain how BMS models are linked with simple count regression models that have covariates associated with the past claims experience. This study could help actuaries to understand how and why they should use BMS models for experience rating. The second objective of this paper is to create artificial past claims history for each insured. This is done by combining recent panel data theory with BMS models. We show that this addition significantly improves the prediction capacity of the BMS and provides a temporary solution for insurers who do not have enough historical data. We apply the BMS model to real data from a major Canadian insurance company. Results are analysed deeply to identify specific aspects of the BMS model.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:17:y:2023:i:1:p:36-62_3
Access Statistics for this article
More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().