EconPapers    
Economics at your fingertips  
 

A Hermite spline approach for modelling population mortality

Sixian Tang, Jackie Li and Leonie Tickle

Annals of Actuarial Science, 2023, vol. 17, issue 2, 243-284

Abstract: One complication in mortality modelling is capturing the impact of risk factors that contribute to mortality differentials between different populations. Evidence has suggested that mortality differentials tend to diminish over age. Classical methods such as the Gompertz law attempt to capture mortality patterns over age using intercept and slope parameters, possibly causing an unjustified mortality crossover at advanced ages when applied independently to different populations. In recent research, Richards (Scandinavian Actuarial Journal 2020(2), 110–127) proposed a Hermite spline (HS) model that describes the age pattern of mortality differentials using one parameter and circumvents an unreasonable crossover by default. The original HS model was applied to pension data at individual level in the age dimension only. This paper extends the method to model population mortality in both age and period dimensions. Our results indicate that in addition to possessing desirable fitting properties, the HS approach can produce accurate mortality forecasts, compared with the Gompertz and P-splines models.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:17:y:2023:i:2:p:243-284_3

Access Statistics for this article

More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:anacsi:v:17:y:2023:i:2:p:243-284_3