Pseudo-model-free hedging for variable annuities via deep reinforcement learning
Wing Fung Chong,
Haoen Cui and
Yuxuan Li
Annals of Actuarial Science, 2023, vol. 17, issue 3, 503-546
Abstract:
This paper proposes a two-phase deep reinforcement learning approach, for hedging variable annuity contracts with both GMMB and GMDB riders, which can address model miscalibration in Black-Scholes financial and constant force of mortality actuarial market environments. In the training phase, an infant reinforcement learning agent interacts with a pre-designed training environment, collects sequential anchor-hedging reward signals, and gradually learns how to hedge the contracts. As expected, after a sufficient number of training steps, the trained reinforcement learning agent hedges, in the training environment, equally well as the correct Delta while outperforms misspecified Deltas. In the online learning phase, the trained reinforcement learning agent interacts with the market environment in real time, collects single terminal reward signals, and self-revises its hedging strategy. The hedging performance of the further trained reinforcement learning agent is demonstrated via an illustrative example on a rolling basis to reveal the self-revision capability on the hedging strategy by online learning.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:17:y:2023:i:3:p:503-546_6
Access Statistics for this article
More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().