Neural networks for quantile claim amount estimation: a quantile regression approach
Alessandro G. Laporta,
Susanna Levantesi and
Lea Petrella
Annals of Actuarial Science, 2024, vol. 18, issue 1, 30-50
Abstract:
In this paper, we discuss the estimation of conditional quantiles of aggregate claim amounts for non-life insurance embedding the problem in a quantile regression framework using the neural network approach. As the first step, we consider the quantile regression neural networks (QRNN) procedure to compute quantiles for the insurance ratemaking framework. As the second step, we propose a new quantile regression combined actuarial neural network (Quantile-CANN) combining the traditional quantile regression approach with a QRNN. In both cases, we adopt a two-part model scheme where we fit a logistic regression to estimate the probability of positive claims and the QRNN model or the Quantile-CANN for the positive outcomes. Through a case study based on a health insurance dataset, we highlight the overall better performances of the proposed models with respect to the classical quantile regression one. We then use the estimated quantiles to calculate a loaded premium following the quantile premium principle, showing that the proposed models provide a better risk differentiation.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:18:y:2024:i:1:p:30-50_3
Access Statistics for this article
More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().