Portfolio management for insurers and pension funds and COVID-19: targeting volatility for equity, balanced, and target-date funds with leverage constraints
Bao Doan,
Jonathan J. Reeves and
Michael Sherris
Annals of Actuarial Science, 2024, vol. 18, issue 1, 78-101
Abstract:
Insurers and pension funds face the challenges of historically low-interest rates and high volatility in equity markets, that have been accentuated due to the COVID-19 pandemic. Recent advances in equity portfolio management with a target volatility have been shown to deliver improved on average risk-adjusted return, after transaction costs. This paper studies these targeted volatility portfolios in applications to equity, balanced, and target-date funds with varying constraints on leverage. Conservative leverage constraints are particularly relevant to pension funds and insurance companies, with more aggressive leverage levels appropriate for alternative investments. We show substantial improvements in fund performance for differing leverage levels, and of most interest to insurers and pension funds, we show that the highest Sharpe ratios and smallest drawdowns are in targeted volatility-balanced portfolios with equity and bond allocations. Furthermore, we demonstrate the outperformance of targeted volatility portfolios during major stock market crashes, including the crash from the COVID-19 pandemic.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:18:y:2024:i:1:p:78-101_5
Access Statistics for this article
More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().