Valuation of guaranteed minimum accumulation benefits (GMABs) with physics-inspired neural networks
Donatien Hainaut
Annals of Actuarial Science, 2024, vol. 18, issue 2, 442-473
Abstract:
Guaranteed minimum accumulation benefits (GMABs) are retirement savings vehicles that protect the policyholder against downside market risk. This article proposes a valuation method for these contracts based on physics-inspired neural networks (PINNs), in the presence of multiple financial and biometric risk factors. A PINN integrates principles from physics into its learning process to enhance its efficiency in solving complex problems. In this article, the driving principle is the Feynman–Kac (FK) equation, which is a partial differential equation (PDE) governing the GMAB price in an arbitrage-free market. In our context, the FK PDE depends on multiple variables and is difficult to solve using classical finite difference approximations. In comparison, PINNs constitute an efficient alternative that can evaluate GMABs with various specifications without the need for retraining. To illustrate this, we consider a market with four risk factors. We first derive a closed-form expression for the GMAB that serves as a benchmark for the PINN. Next, we propose a scaled version of the FK equation that we solve using a PINN. Pricing errors are analyzed in a numerical illustration.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:18:y:2024:i:2:p:442-473_8
Access Statistics for this article
More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().